
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

A NAT Traversal Method for

Interconnecting Networks in an

SDN Environment

by

Shahila Sadiq

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2020

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2020 by Shahila Sadiq

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

I dedicate my thesis to My Parents Brother Tariq Mehmood Jentsch. I have a

special feeling of gratitude for my beloved parents, siblings and friends. Special

thanks to my supervisor whose uncountable confidence enabled me to reach this

milestone.

CERTIFICATE OF APPROVAL

A NAT Traversal Method for Interconnecting Networks in

an SDN Environment

by

Shahila Sadiq

(MCS181020)

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Muhammad Yousaf Riphah IU, Islamabad

(b) Internal Examiner Dr. Nadeem Anjum CUST, Islamabad

(c) Supervisor Dr. Amir Qayyum CUST, Islamabad

Dr. Amir Qayyum

Thesis Supervisor

December, 2020

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Computer Science Faculty of Computing

December, 2020 December, 2020

iv

Author’s Declaration

I, Shahila Sadiq hereby state that my MS thesis titled “A NAT Traversal

Method for Interconnecting Networks in an SDN Environment” is my

own work and has not been submitted previously by me for taking any degree

from Capital University of Science and Technology, Islamabad or anywhere else in

the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Shahila Sadiq)

Registration No:MCS181020

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “A NAT

Traversal Method for Interconnecting Networks in an SDN Environ-

ment” is solely my research work with no significant contribution from any other

person. Small contribution/help wherever taken has been duly acknowledged and

that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Shahila Sadiq)

Registration No:MCS181020

vi

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all

praises to Creator and Sustainer of the universe for the strengths and His blessing

in completing this thesis.

I would like to express my sincerest appreciation to my enthusiastic supervisor,

Dr. Amir Qayyum for his supervision, assistance, and immense knowledge. I

am sincerely thankful to him for his constant support, motivation, and patience.

I am grateful to all members of CORENET group especially Dr. Mudassir Tufail,

Dr. Naveed and Sir Umar for their kind help and guidance during my research

work.

My deepest gratitude goes to my beloved parents and siblings for tolerating my

mood swings and being patient with me. A very special thanks to my brother

Tariq Mehmood Jentsch for believing in me, for giving me the determination to

overcome many trying moments to pursue my dreams. Heartily thanks to my

parents for their love and moral support. Sincere thanks to my sisters and brother

for their support, kindness and moral support during my study.

A true friend is one who thinks you are a good egg even if you are half-cracked.

A very special thanks to my friend Asia Shahab who supported and encouraged

me when I was about to give up.

Last but not the least and without hesitation, I would like to thank tea, for helping

me survive all the stress.

(Shahila Sadiq)

Registration No:MCS181020

vii

Abstract

Emergence of technology, applications and services demands for new network-

ing requirements.With the rise of social media, mobile, cloud and big data, the

demand for ubiquitous accessibility, dynamic management, high bandwidth and

IPV4 addresses have increased. Assigning unique IP addresses to growing num-

ber of network devices is impossible from IPV4 address range because it was not

imaginable at the time of designing IP that internet will grow to such huggable

size. Network Address Translation (NAT) is designed for conserving IP address

and to solve the problem of IP exhaustion. As networking paradigm is moving

to Software Defined Networking (SDN) now so the need of developing application

for SDN is increasing. SDN has changed the way of designing and managing the

networks. It emphases on improving the limitations of conventional network and

decouple the forwarding or data plane from control plane making the management

process easy. This decoupling feature makes the network directly programmable

by keeping the basic infrastructure abstracted for services and applications.

Different techniques exist for developing application on SDN but most of them

use NAT gateways for IP conversion adds workload and delay on these gateways.

In this study, we aim to focus on this underlying feature of SDN for developing

application at software level. In this thesis, we propose a new approach for in-

terconnecting networks where there is no need to have unique IP addresses and

controller handles the process of address translation. Our proposed solution is

based on using Software Defined Networking technology to help networks to in-

terconnect with each other as per their need. If an organization is looking to

consume a service in much flexible fashion with high availability and best possible

rate without worrying about whether that service is coming one network or other

then the proposed solution alleviates the problem of establishing connectivity by

automating the process. Controller is the main entity in this paradigm which

acts as brain of network and takes decision about packets. The controller used

in this thesis is Floodlight controller because it has centralized architecture with

modularity and a lot of developer’s community support. The proposed approach

viii

implements NAT registry service on controller which is maintained centrally. So

instead of organizations to maintain registry for keeping unique IPs and for com-

municating with others this task is done centrally using controller and existing

technologies i.e. private networks and private networking schemes. With the help

of this NAT registry, the process of IP conversion is automated. Results have

shown that by automating the process of IP conversion using controller, the need

for processing on hardware (at NAT gateways) has mitigated. Organizations can

now get services locally or globally using their private networking schemes and

with this IP converting NAT registry on controller, no two organizations have

same IP on network.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures x

List of Tables xi

Abbreviations xii

1 Introduction 1

1.1 Traditional NAT Traversal Schemes 4

1.2 SDN based NAT Traversal Scheme 5

1.3 Terminologies about SDN . 5

1.3.1 Control Plane . 6

1.3.2 Data Plane . 6

1.3.3 Controller . 6

1.3.4 OpenFlow . 6

1.3.5 Southbound Interface . 7

1.3.6 Northbound Interface . 7

1.3.7 RESTful API . 7

1.4 Problem Statement . 7

1.5 Research Questions . 8

1.6 Research Methodology . 8

1.7 Research Contribution . 10

1.8 Thesis Structure . 10

2 Literature Review 12

2.1 SDN and Applications Development on SDN 12

2.2 SDN Controllers . 20

2.2.1 OpenDaylight . 20

ix

x

2.2.2 NOX . 21

2.2.3 Beacon . 22

2.2.4 ONOS . 22

2.2.5 Floodlight . 23

2.2.6 RYU . 24

2.3 Comparison and Conclusion . 26

3 Proposed Approach 31

3.1 Introduction . 31

3.2 Proposed Architecture . 31

3.2.1 Mininet . 32

3.2.2 Pingall Command and ICMP Packets 34

3.2.3 Flow Table Entries . 35

3.2.4 Controller . 35

3.2.5 NAT Module . 36

3.2.5.1 NAT Working . 37

3.2.6 Link Convergence . 39

4 Results and Discussion 41

4.1 Test Environment . 41

4.1.1 Floodlight Compilation . 42

4.2 Network Emulation . 42

4.2.1 Topologies . 42

4.3 Comparison . 49

5 Conclusion and Future work 55

5.1 Future Work . 56

Bibliography 58

List of Figures

1.1 Architecture of SDN . 3

1.2 Traditional P2P Communication Based on Hole Punching 4

3.1 Flowchart of Proposed Approach 32

3.2 Implemented Topology . 33

3.3 Sample Code for Creating Simple Network Topology using Python . 34

3.4 Pingall Result Showing Connectivity 34

3.5 Working of Controller . 35

3.6 Architecture of NAT Module . 36

3.7 ARP Request and Reply Sequence 38

3.8 IP Conversion Through NAT Registry 38

3.9 Organizations Connection When Link is Up 39

3.10 Organizations Connection When Link is Down 40

4.1 Topology for Experiment . 42

4.2 Hosts Pinging Each Other . 43

4.3 Wireshark Capture of NAT Result in Simple Topology 44

4.4 Ping Reachability Before and After Rules Installation 45

4.5 Wireshark Results for ARP . 45

4.6 RTT by PING Sequence Number On Simple Topology 46

4.7 RTT by PING Sequence When Link is Up and Down 46

4.8 Bandwidth/Jitter . 47

4.9 Bandwidth/Out of Order Packet % 48

4.10 Time Interval/Jitter . 49

4.11 Time Interval/Out of Order Packet % 49

4.12 Comparison of Previous and Proposed Approach (Bandwidth/Jitter) 50

4.13 Comparison of Previous and Proposed Approach (Bandwidth/Out
of Order Packet %) . 51

4.14 Comparison of Previous and Proposed Approach (Time Interval/Jit-
ter) . 52

4.15 Comparison of Previous and Proposed Approach (Time Interval/Out
of Order Packet %) . 52

xi

List of Tables

2.1 Comparison of SDN Controllers . 24

2.2 Literature Review . 27

4.1 Configuration of Hosts for Simple Topology 43

4.2 Configuration of Switches for Simple Topology 43

4.3 UDP Value for Jitter and Out of Order Packet % (10s Time Interval) 47

4.4 UDP Value for Jitter and Out of Order Packet % (20Mbps) 48

4.5 Comparison of Results (w.r.t Bandwidth) 50

4.6 Comparison of Results (w.r.t Time Interval) 51

xii

Abbreviations

API Application Program Interface

BGP Border Gateway Protocol

COB Continuity of Business

Co-Lo Co-Location

CSPs Cloud Service Providers

IP Internet Protocol

IPV4 Internet Protocol version 4

L3 Layer Three

MAC Medium Access Control

MPLS Multiprotocol Label Switching

NAT Network Address Translation

NBI Northbound Interface

NFV Network Function Virtualization

ODL Open Daylight controller

OF OpenFlow

QoS Quality of Service

RTT Round Trip Time

SBI Southbound Interface

SDN Software Defined Networking

SD-WAN Software Defined Wide Area Network

TCP Transmission Control Protocol

VPN Virtual Private Network

xiii

Chapter 1

Introduction

With the rise of the World Wide Web (WWW), the prime illustration of Internet

moved away from the educational community to user oriented use case. Internet

was first used in the educational community for the file transfer and email purpose

only but when Internet start growing in the last era of 20th century, the need for

new and innovative protocols rise [1].

With the emergence of the social media, mobile, cloud and big data, the demand

for ubiquitous accessibility, dynamic management, high bandwidth and Internet

Protocol version 4 (IPV4) addresses have increased [2].

Different type of Internet of Things (IoT) devices have also invented with the

development of Internet and IoT technology. Wang et al. [3] stated that Internet

Protocol (IP) address configuration is needed by all the devices for connecting to

the Internet. Because of increasing number of devices IP addresses are lacking

gradually in Internet Protocol version 4 (IPV4) network environment. Besides

new type of applications developed for the end users generate their own features

that need to be provided by Internet [4].

It was not imaginable at the time of designing IP that internet will grow to such

huggable size. Assigning unique IP addresses to growing number of network de-

vices is impossible from IPV4 address range [3].

1

Introduction 2

IPV6 was developed to overcome the address problem that was faced in IPV4 but

there was no built-in backwards compatibility with IPv4 which was hindering the

communication of IPV6 and IPV4 networks [6].

With increasing number of devices different applications have also developed with

different requirements for making delivery successful over internet for example

applications like VOIP are sensitive to delay whereas applications like video con-

ferencing require certain bandwidth for their flow.

Conventional networking works on the basis of decentralization because every de-

vice working in conventional networking has its own control plane. If there are

changes to be made according to any specific applications, then every network

devices device has to be configured manually [4].

It is quite obvious that the changing application’s requirements demand for the

network to be flexible and scalable and new IoT devices need more unique addresses

to connect with internet.

Network Address Translation (NAT) is designed for conserving IP address and to

translate IP between public and private IP minimizing the need for registering IPs

or having unique IPs [3].

An SDN-based NAT is mostly implemented at Wi-Fi access point and problem of

Internet Protocol (IP) exhaustion can be solved temporarily but still Peer-to-Peer

(P2P) session cannot be established between devices located in different private

networks [5].

New requirements demanded by the applications can be fulfilled by making the cen-

trally controlled network. Software Defined Networking (SDN) can be considered

in this regard as it has changed the way of designing and managing the networks.

It emphases on improving the limitations of conventional network and decouple

the forwarding or data plane from control plane making the management pro-

cess easy [57]. This decoupling feature makes the network directly programmable

by keeping the basic infrastructure abstracted for services and applications [7] as

illustrated in Figure 1.1 [8].

Introduction 3

Figure 1.1: Architecture of SDN

The control plane decides all the policies and rules related to the packet that where

and how the packet will be forwarded and data plane handles the packet according

to the rules dictated by the control plane [1]. The control logic is centralized and

the controller, working as central entity enables network programmability which

automates the network manageability through programs. Network traffic can be

adjusted dynamically because controller has a global view of the network. Control

on forwarding devices is achieved through OPenFlow protocol which enables the

communication between controller and forwarding devices [10]. Data plane devices

can be designed in more general way because they are separated from control

plane. In other words it can be said that these devices can become unintelligent

and simple boxes with a lone responsibility of handling and forwarding the packets

as per the rules defined by control plane [1].

In recent times there has been an increased concentration in SDN for wide-area

network scenarios called as SD-WAN. The aim is to let network administrator

centrally control the network without changing hardware. Traditional networking

can be improved by defining network policies and developing applications i.e. NAT

in a centralized way. It also allows quick optimization and management of net-

work resources through dynamic and automated SDN program [3]. By developing

Introduction 4

applications like NAT on SDN, the problem of increasing networking devices and

new requirements can be diminished.

1.1 Traditional NAT Traversal Schemes

Different type of NAT traversal schemes exist that support P2P communication.

Some of these schemes are Relaying, Connection Reversal and hole Punching [13].

In relaying scheme, every packet is forwarded by a relay server located in public

network. P2P communication can be supported by this scheme stably, but causes

workload on relay servers and adds transmission delay [56]. In connection reversal

scheme, one device locates private network and another device locates public net-

work. In this way packets do not have to move through relay server rather packets

move through the device that uses public IP. It has advantage over relay scheme

but at the same time flexibility is degraded by public IP address limitation. In

hole punching scheme, different devices trace several private networks and then

P2P communication is performed. Fig 1.2 represents the traditional hole-punching

scheme [5].

Figure 1.2: Traditional P2P Communication Based on Hole Punching

Introduction 5

Devices exchange their own NAT binding information to relay server and procuring

the NAT binding information of another device that wants to do P2P communica-

tion. As private network have many devices so network performance is degraded

by NAT traversal schemes because of packet modification and NAT processing [5].

1.2 SDN based NAT Traversal Scheme

As SDN provides central control over network, this property can be used for im-

proving traditional NAT traversal method. As applications are implemented on

SDN, so NAT application can also be developed on SDN. The controller in SDN

can handle the mapping from private to public network in a central place rather

than collecting from every data plane.

As controller has global view of whole network topology, so the information of

changing network is provided to control plane periodically. Appropriate flow en-

tries can be configured on Openflow switches according to the rules dictated by

the control plane [3].

As whole process is handled by the controller, so it is required by the hosts to be

notified as in case of hole-punching.

1.3 Terminologies about SDN

In this section, we will define some common terms that are used in SDN. The

definitions of the terms provide an easy understanding and overview of the Software

Defined Networking (SDN).

1.3.1 Control Plane

The part of network which carries information about making necessary decisions

for establishing and controlling the network is called control plane [14]. It can

Introduction 6

also be said that control plane is the main place where routers and switches make

decision about packet that where to forward this packet keeping in view the global

view of network [15]. It is also called as brain of the router.

1.3.2 Data Plane

Another name for the data plane is forwarding plane. Data plane have routers

and switches used for forwarding the packet. In SDN these are not concerned with

making decision. Their only purpose is to forward packet according to rules given

by control plane [16].

1.3.3 Controller

The main entity working in the control plane of Software Defined Networking

(SDN) is controller. For deploying intelligent network it manages flow control

through Southbound API below and business and application logic through North-

bound API above. Controller usually contains different modules that perform

different tasks [17].

1.3.4 OpenFlow

OpenFlow is the communication protocol in SDN. Because of this protocol SDN

controller can connect directly with the forwarding plane devices i.e. router and

switches of network. Devices must support OpenFlow protocol for communicating

with controller if they are working in an OpenFlow Environment. Controller can

inject rules in network devices using this protocol [18].

1.3.5 Southbound Interface

Southbound API devices that how the controller should communicate with its data

plane. Controller communicates with its data plane for making changes in the

Introduction 7

network. This communication is made possible through the OpenFLow protocol

which is connected to the southbound interface controller [19].

1.3.6 Northbound Interface

The communication of controller with application plane is made possible through

its northbound API. Firewall, security, virtual gateways and load balancing are

different applications and services. Application developers can easily connect with

network and can make changes according to applications without knowing inner

working of network. This interaction is made possible with help of northbound

interface [19].

1.3.7 RESTful API

RESTful API or REST API is the abbreviation of the representational state trans-

fer (REST) application program interface (API). It is frequently used for the com-

munication in the web service development. It uses less bandwidth so it is preferred

for the less internet usage. It is used for the building APIs and this way user can

connect with the cloud services. HTTP request is used for the different actions

[20].

1.4 Problem Statement

Existing literature defines different types of techniques for IP conversion. In those

studies, Network Address Translation (NAT) is performed at NAT gateway or

Wi-Fi access points. Different studies have also proposed that how applications

can be developed for SDN environment, but even in such network NAT gateways

are used for converting IPs adding workload on these gateways. Besides, some

approaches have considered including extra physical hardware in SDN for address

translation purpose causing delay and hindering real time transmission.

Introduction 8

1.5 Research Questions

Based on our problem described above we have identified following research ques-

tions:

RQ 1: How organizations can be interconnected using their private IPs and with-

out collision due to same addresses?

NAT registry application is implemented on controller which establishes and con-

trol network in a central way. Hence changes on network and address translation

can easily be handled by controller which ensures that no two devices have same

address on network.

RQ 2: Which SDN controller can perform best when interconnecting organiza-

tions? What could be parameters for comparing and selecting controller?

Through in depth study of different controllers that are used in SDN environment,

parameters are formulated for comparing and selecting controller.

RQ 3: How service availability and disaster management can be assured in case

of particular service provider goes down?

Our approach focuses on automating the process of link convergence in case par-

ticular service provider goes down. Multipath routing is used for accessing service

from the alternative path.

1.6 Research Methodology

1. In the first phase, we did literature review to find the common techniques

that are relevant to connecting clouds and organizations and converting their

IPs. After studying different techniques we concluded that NAT gateways

are used for converting IPs. As networking paradigm is moving to SDN

which is based on centrally controlling the network still NAT gateways are

used for converting IPs adding work load and causing delay.

Introduction 9

2. In order to overcome the gap in existing approaches, we have proposed im-

plementing NAT registry application on SDN controller which reduces delay

and workload on NAT gateways and supports communication between hosts

in private networks. .

3. NAT application is implemented after studying details about the controller’s

documentation that how a new module can be implemented and integrated

with the existing modules and how application installs rules on OpenFlow

switches.

4. Steps performed in our approach are discussed below:

(a) Firstly, we selected Floodlight controller for our implementation be-

cause it was easy to implement any new module and integrate it with

existing ones.

(b) Next we implemented NAT registry application for controller.

(c) As NAT works with Layer3 routing application, so we used existing

application of Layer3 Routing Application of floodlight controller and

integrated with our application.

(d) For checking the correctness of implemented application, we emulated

the topology using emulator Mininet

i. We wrote a python script for topology with 2 hosts, three switches

and one controller.

ii. For checking the connectivity between hosts, Pingall command was

used.

iii. After initiating communication between hosts, Wireshark was used

for finding whether IPs were converted correctly or not.

iv. Afterwards, Iperf command was used for finding jitter and packet

out of order % for different values of Bandwidth and Time Interval.

These parameters are also used for comparison.

(e) Multipath routing is also used for converging traffic in case particular

link goes down.

Introduction 10

5. After performing all these steps, we have compared our results with dataset

of NAPT [8].

1.7 Research Contribution

In this research work, we have proposed a technique of implementing NAT appli-

cation on controller. Global view of network topology is maintained by controller

in SDN and after implementing NAT service, translation process of IPs for dif-

ferent devices is handled centrally. Workload from network devices is reduced by

central NAT which distributes workload among multiple devices. Parameters have

also formulated for finding the suitable controller for any scenario i.e. architecture

of controller, how easily a new module can be implemented and integrated with

existing modules, language supported by controller, community support for con-

troller that how many people are using that controller and whether it can be used

for research purpose or not. Multipath routing is used for automating the process

of link convergence. By this process, traffic can be converted to alternative path

in case one link goes down.

1.8 Thesis Structure

The Thesis is organized in five chapters.

• After introduction chapter, chapter 2 presents the literature review related

to SDN and its controllers.

• Chapter 3 presents methodology and implementation details.

• Chapter 4 presents details about testing environment and results of the

work.

• Chapter 5 finishes up the entire work and gives future research directions.

Chapter 2

Literature Review

In order to understand the context of this thesis, it is important to understand

Software-Defined Networking paradigm in a better way. The main objective of this

section is to assess the available literature relating to Software-Defined Networking

and how this approach can be effective for controlling network and developing

applications in a centralized way. The literature review is presented in multiple

sections starting with the explanation SDN and applications development in SDN

in following section 2.1.

Section 2.2 explains the controllers that are used in SDN.

Section 2.3 concludes and summaries the chapter.

2.1 SDN and Applications Development on SDN

The conventional WAN technologies used for connecting Data Centers have some

issues and this infrastructure is not a good solution for online services like Mi-

crosoft, Google and Amazon. The devices used for interconnection are not flexible

enough to deal with different types of data packets and dynamically executes the

changes occurring in paths [21]. WAN needs to be intelligent enough that it can

adapt changes according to the state of network, at any time so that, it can utilize

11

Literature Review 12

links and nodes fully. The solution to handle this problem is the separation of

data handling module from forwarding module. So the control plane is extracted

from software and implemented as software which enables a centralized control

over the network and increase resource optimization and efficiency. This idea is

the base of new paradigm called as Software Defined Networking (SDN). SDN was

first deployed by Nicria in 2010 with NTT and Google as co-developers [22].

The emerging paradigm SDN separates the control plane from data plane making

the switches simple forwarding devices and whereas logic is implemented centrally

in control plane.It is changing the way of designing and managing the network.

The forwarding plane works according to the rules dictated by the control plane.

Two main characteristics of SDN are: separation of control plane and data plane

which allows the network to be adaptable, cost-effective, dynamic, software pro-

grammable and easily manageable. This separation between the control and data

plane allows for data plane devices to be designed in a generic and simplified way.

Secondly, a single software control program controls multiple data plane elements

because an SDN combines the control plane. The controller controls the data

plane with well-defined API [23]. Controller of SDN is like the brain of network

which manages the flow to the switches below and business logic and applications

above [24].

Kim et al. [25] presented that how network can be configured and managed by

using SDN. Policies can be defined in high language and can easily determine the

problem occurring in network. SDN separates the data plane from control plane

and makes the network switches as simply forwarding devices. Entire network is

then controlled by centralized software. Reasons due to which networks become

difficult to manage are: Network state change frequently and Configuration of net-

work on every device. The conventional methods makes it impossible for network

operators to define such configuration policies that responses to low level events

occurring in networks automatically. By introducing SDN the continual change

to network state can be handled automatically by increasing level of abstraction,

designing programming languages, and network configuration. The need to config-

ure individual device is not needed now because network operators can now make

Literature Review 13

network wide decision in a single logical location with a global view of whole net-

work state. In this approach limited number of control domains were considered

for implementing polices ignoring the automation of IP conversion.

Jammal et al. [9] presented the advantages of using SDN in multiple environments

such as Data Centers and the challenges faced by SDN. Locating servers and ap-

plication through IP addresses can work fine in static networks where every device

can be identified by IP address but cannot work in environment where network

state changes continually. Managing such a sizable network through traditional

approach is time consuming and expensive. The target of SDN is to simplify the

network architecture by using the idea of centralizing the handling the L2 switch-

ing intelligence and L3 routing. Though SDN is one of the promising solutions in

IT network yet it faces certain challenges like reliability and scalability. No way

is defined in approach for handling controller failure. There must be some way

that maintains the network reliability and in case of link failure, Controller should

support multipath and reroute to active paths. Besides Routers maintain registry

for IP conversion causing more delay.

Nunes [26] presented the historic perspective of programmable networks continuing

with idea of SDN and its applications and then the future of SDN. For simplifying

network evaluation, programmable network’s idea is considered. SDN promises to

significantly simplify the network innovation, management and evaluation. The

key idea is to let software developers rely on network resources the same way as

they rely on storage and computation resources. In SDN network devices act as

simple forwarding devices and whole intelligence is shifted towards central logi-

cal controller. Network devices can be controlled through open Interface that is

Open Flow or ForCES. Using single controller can become reason for whole net-

work failure so switch can connect to multiple controllers via OPenFlow and can

work these controllers can work as backup. Functionalities can be moved from

middle box and can be implemented on controller in SDN. Another example of

SDN related applications is the deployment from Google for connecting its data

centers. In future SDN can support in different type of networks like cloud service,

heterogeneous networks and Information Centric networks.

Literature Review 14

Raghavan et al. [27] proposed the outline of new architecture called as Software

Defined Internet Architecture SDIA).The main purpose is that architectural evolu-

tion can become a part of software’s task instead of hardware. In current network

scenario, architecture is coupled with infrastructure which means that if change

is to be made in architecture, which adds huge cost both for development and

deployment and hence architecture evolution becomes difficult. SDIA combines

and applies the main idea from software forwarding, MPLS and SDN. As a result

the services can be implemented as software and approach becomes flexible and

modular. The architecture follows top- down approach where internet services are

decoupled in tasks and then the implementation related to these tasks is focused.

As this architectural implementation is basically related to software so it can be

standardized through open source effort and hardware standardization from large

standardized bodies is not required. Multiple perspectives were considered on this

approach but there was no automation for services offered by middle box.

Feamster et al. [57] presented the link between SDN and other technologies like

Network Function Virtualization (NFV) along with history of programmable net-

work. Computer networks are very difficult and hard to manage because they are

made up of different type of equipment that include switches, routers and middle

boxes like load balancer, intrusion detection systems and network address trans-

lators. The software that run on these routers and switches is most of the time

closed and proprietary and have gone through many years for standardization and

interoperability testing.

These devices are configured individually by the network administrator for differ-

ent vendors and sometimes for different products of same vendor. Deploying a new

service in such case is difficult because it needs configuration of all network de-

vices again. If networks are made programmable then deploying new services and

making new innovations can become easy. The main idea of the programmable

networks started from active networks but was lacking incremental deployment.

Then vision the moved to the separation of control and data plane. SDN focuses

on this approach because it is changing the way of designing and managing the

network.

Literature Review 15

Sahba [28] presented basics of SDN and technique through which switch can com-

municate with controller. SDN helps frequently changing network states by pro-

viding a centralized control plane. In cloud infrastructure, SDN use network cen-

tralization and network virtualization. Sin SDN, network devices can be pro-

grammed and virtualized networks can be developed by using existing hardware

infrastructure. New virtual networks can be setup, upgrade and modified very

easily and cheaply using SDN. In order to let communication happen between for-

warding devices and controller, OpenFlow protocol is used. This protocol is used

for decoupling the switch from controller. This is one of first SDN communication

protocol. Controller can access flow table and can add, delete and update entries

with the help of protocol. Main purpose of this protocol is to make communication

between switches and controller standardized in SDN based architecture. Increas-

ing functionality and performance and decreasing cost and network complexity

can be achieved using protocol. OpenFlow ports are used for connecting switches

with each other but there were no rules defined for converting IP.

Sharma et al. [29] proposed blockchain based cloud architecture using SDN and

fog computing. High performance and cost effective computing can be achieved

using this cloud based infrastructure. Blockchain technology is now considered

as important because using this applications can be operated in distributed way.

SDN decouples the forwarding plane from control plane making control more cen-

tralized. With the arrival of Iot, all intelligent thing like sensors, mobile, smart

cars, laptops are connected to internet and have data analysis capability. Combi-

nation of IoT and cloud computing makes Fog computing that can provide cloud

services like computing, network capabilities and storage to the users of system.

The proposed architecture is efficient in offloading the data to cloud and accom-

plish design principles with less overhead. For offloading the data to cloud, NAT

gateways are used for IP conversion adding workload on gateways.

Ali et al. [30] proposed source routing by making use of MPLS label. The solution

is applicable both on SD-LAN and SD-WAN. SDN offers virtualization, resource

sharing and flexibility by separating the control and forwarding plane. Network

is divided in many sections using clustering algorithm called as MaxHop. Each

Literature Review 16

section of network have different tradeoff overhead like bandwidth, traffic and flow

table so this multi objective optimization problem is solve with linear weighted

scalarization. Using routing with MPLS have many benefits and support hetero-

geneous switches with many ports. The proposed solution reduced bandwidth

overhead to 79% as compared to traditional MPLS based forwarding scheme that

needs complete encapsulated forwarding information at ingress switches. By di-

viding the network on basis of routing information in sub sections, setting the

contacted switches and dividing the routing information along switches, the pro-

posed solution outperforms the existing technique.

Gallegos [31] presented the evolution of SD-WAN for organizing business net-

work by interconnecting two data centers. Emergence of new technologies like

IoT, microsegmentation, virtualization and cloud based technologies generated

new demand for Internet community. Traditional WAN technologies lack the re-

quirements that are needed for real time applications and are supported by cloud

based infrastructure. These services demand for high bandwidth. The routing

algorithm working in WAN is TCP/IP for layer 3 or 4 and has high failure recov-

ery time and inefficient resource utilization. The problem can be solved by using

SDN solution in WAN called as SD-WAN. Automation and Orchestration feature

can achieved using SD-WAN. The centralized control and management makes it

more flexible to react more quickly, and programmable interface makes it dynamic

enough to adapt any infrastructure. Results of proposed approach demonstrated

that adequate level of QoS can be achieved by providing services efficiently in

cloud through SD-WAN. Beside this new technologies like Iot, services on demand

and cloud based services easily be enabled by using SD-WAN. But IP conversion

process at NAT gateways caused workload on gateways and added delay.

Huiracocha et al. [32] proposed the use of SD-WAN for interconnecting two Data

Centers with pre-fined QoS and traffic prioritization. Traditional network is fac-

ing challenges with the emergence of mobile, cloud computing and big data be-

cause these applications and services require network to be more dynamic and

manageable. One solution is to invest more for increasing capacity of existing

infrastructure but the size of network, inactive time in network and heterogeneous

Literature Review 17

nature of services makes this solution invalid. SDN makes management process

very simple and allows innovation and evolution. The proposed solution tries to

solve any of the problems that occur while interconnecting data centers over tra-

ditional WAN. Limitations of existing networks like traffic prioritization and lack

of efficient bandwidth management can be solved by using software defined tech-

nologies in wide area network. Better decision can be made regarding resource

allocation and without depending on manufacturer, a global view of infrastruc-

ture can be provided. Results proved that resources can be utilized efficiently and

sufficient level of QoS and traffic prioritization can be achieved using SD-WAN

for interconnecting data centers but this approach was limited to two datacenters

only so for interconnecting more datacenters IP conversion process is needed.

Bano et al. [12] proposed a solution called as Miracle that uses Software Defined

Networking and Network Virtualization and provide benefit like cost reduction and

agility to businesses who want to take benefit of colocation services. Cloud service

providers follow different data models and provide various cloud services. These

CSPs host their hardware in co-location points. As these co-location points do

not have every type of service so organizations have to connect with multiple co-

location points for multiple services. This is not a cost effective way for offering and

managing storage and big data. The proposed solution creates logical elements by

offering network virtualization. Instead of keeping multiple hardware in multiple

co-location points, the Miracle platform takes service direct from the cloud and

forwards it to requested organization, this way the need for organization to invest

on multiple hardware in order to get services from multiple co-location points is

mitigated. The solution is beneficial for those organizations who want to migrate

to cloud to offer their services. Custom functionalities, flexibility and abstraction

can be achieved with ease. The approach proposed colo-connectivity but there was

no process defined for address translation increasing the possibility of overlapping

customer’s addresses.

Lallo et al. [11] proposed an Software Defined Networking (SDN) based approach

for supporting end to end connectivity between collaborating partners. Communi-

cation between federated partners was made possible using SDN on network edge.

Literature Review 18

Approach was based on Network address and port translation with IP routing

and flexibility and scalability was achieved by leveraging SDN. Although this ap-

proach showed its effectiveness in various network scenarios yet there was chance

of overlapping customer address space because there was no mechanism defiend

for dealing with this.

Jain et al. [33] presented design, implementation and evolution of a private WAN

that was connecting Google’s data centers present geographically. This private

WAN is called B4. Deployment of new rapid network is enabled by separating

control and data plane. Traditional WAN utilizes link almost 30-40% because all

applications are treated equally WAN places premium on high availability but B4

solution utilized 100% link with cost effective bandwidth.

It meets application bandwidth demand more efficiently than any other solution.

Bottleneck and future challenges in SDN is protocol bridging from data plane to

control plane and the programming that makes SDN dynamic. B4 introduced

hybrid approach that took benefit from existing routing protocols and new traffic

engineering services and demonstrated that how SDN can be introduced in existing

infrastructure gradually.

Yang et al. [2] presented the architecture and advances in SD-WAN. Advent of new

applications and services demand more requirements from Wide Area Network.

The base of Wide Area Network was best effort mentality which had no concern

to provide guarantee for service quality. Beside this Wide Area Network is not

easy to upgrade ion case of change occur in requirements. SD-WAN applies the

idea of SDN in Wide Area Network.

It simplifies the building and managing perspective of connection in large geo-

graphical area and gives flexibility, central monitoring, control and management

with very less cost. Two main features of SD-WAN are: no need for manually

configuring each device as policies are defined centrally and applications that are

already working in centralized manner can be hosted through inherent program-

matic way. In the proposed approach, NAT traversal method caused workload on

servers which added further delay.

Literature Review 19

Kim et al. [5] presented the idea of fuuly NAT traversal scheme using SDN envi-

ronment. The approach was based on packet switching rather than packet modifi-

cation. Because of the packet switching the delay can be reduced because packet

header do not have to be modified in order to process further. IoT global connec-

tivity service can be provided by internet service provider and the approach also

takes advantage of separated control and data plane for achieving manageability.

Monir et al. [8] presented an approach for making network translation process easy

in SDN environment by introducing a middleware called as NAPT. The middle

ware used was programmable and its purpose was to make translation process easy

and effective. Several calculation were made for delay and out of order packet per-

centage by using bandwidth and time interval as other parameter. The inclusion

of additional hardware added more delay and increased cost.

2.2 SDN Controllers

This section gives a detail about SDN controllers and the services they are already

providing and comparison of main features of popular controllers.

In order to implement network services there are some desired characteristics re-

quired for controller like it must be well documented and widely used by commu-

nity. Following section will discuss most popular SDN controllers.

2.2.1 OpenDaylight

OpenDaylight is a modular open platform for customizing and automating net-

works of any size and scale. The OpenDaylight Project arose out of the SDN

movement, with a clear focus on network programmability. It was designed from

the outset as a foundation for commercial solutions that address a variety of use

cases in existing network environments [34]. With this mission ODL was intro-

duced in 2013.Originally led by Cisco and IBM, but now it is hosted under Linux

Foundation Project. It is one of the most extensively deployed SDN controllers

Literature Review 20

and has received industry wide support. Its code can be exploited in number

of services [35]. Considering the architecture of ODL, Model-Driven Service Ab-

straction Layer (MD-SAL) is the fundamental of ODL platform. The interaction

between network devices and network applications is handled in SAL. The model

used by ODL is YANG which represent network devices and applications and SAL

is used for exchanging data and adapting mechanisms between YANG models [34].

YANG is a data modeling language that was initially designed by the IETF NET-

CONF Data Modeling Language Working Group [36]. YANG data model is used

in ODL so that micro services can be created and combined in order to solve more

complex problems. Because of the modularity and flexibility of ODL it can be

used by end users easily and they are allowed to create controller with whatever

feature they need.

2.2.2 NOX

The first SDN controller was NOX which was initially developed by Nicira net-

works. It was first controller that supported OpenFlow protocols. In 2008 it was

given to research community and became basis for many projects on SDN. NOX

initially used cooperative threading to process events in a single threaded manner

[37]. Its popular applications are Ethane and SANE (represent network as file

system). Different versions of NOX are NOX, NOX-MT, and POX. Novel NOX

supports C++ only and if compared with old NOX its network applications are

fewer. NOX-MT is quiet altered version of NOX[38]. Different optimizations tech-

niques have been introduced in it so that multithreading process can be introduced

in it and response time of NOX can be improved. Another version based on the

Python is POX. Main idea behind this was to create a separate python based plat-

form. Fundamental purpose of POX is research [23]. Considering the model, NOX

is assembled on an event-based programming model. It accepts a simple model

of programming interfaces that rotates around three pillars: events, network view

and namespace. Events can be generated by directly OpenFlow messages or by

NOX applications. As far as namespaces and the network view are concerned,

Literature Review 21

NOX consists of number of basic applications that construct the network view

and maintain a high-level namespace that can be used by other applications [39].

2.2.3 Beacon

A Java-based open source OpenFlow controller created in 2010 by Stanford Univer-

sity and Big Switch Network [40]. Beacon was widely used for teaching, research,

and as the basis of Floodlight. It was one of the cross platform, fast and modu-

lar SDN controller and supported both event and threaded based operations [41].

The main reason behind its popularity was that it was considered important in

research community. Three main objectives behind the development of Beacon

were: attain high performance, deliver developer side productivity and surge run

time capability to start and stop application [40]. For maximizing code reuse and

to mitigate the development burden for both controller and application using it,

Beacon took advantage from many off the shelf libraries [42]. Basic architectural

component of Beacon is bundle. Bundles are like jar file which contain metadata,

java classes, resources and others. Bundles consume other packages, extended

other bundles, run codes, and share their resources. These code bundles are in-

dependent and can be installed at startup or runtime so this thing makes Beacon

modular and configurable without much problem [40].

2.2.4 ONOS

For building next generation SDN solutions ONOS is considered as important

SDN controller. This controller can meet the needs by offering the adaptability to

make and deploy new dynamic network services with easy programmatic interface.

Configuration and real-time control of network are supported by this controller

which eradicate the desire to run switching control protocol and routing protocol

inside network fabric. Using this controller end users can create new applications

without changing the data plane system [43]. ONOS has been designed keeping in

mind the following goals: Code modularity, separation of concern, configurability

Literature Review 22

and protocol agnosticism. More precisely, it should always be possible that new

functionalities can be introduced without any difficulty as they are self-contained

units. For achieving this, there must be clear boundaries between subsystems.

In addition, there must be possibility of loading or unloading features at startup

or even at run-time. Moreover an application must not be bounded with specific

protocol library or any implementation [44]. Distributed architecture of ONOS

is a key design principle. It can be deployed as pool of servers which might

coordinate with each other and can provide much better capability e.g. if one

of the controller instance fails, then distribution can provide fault tolerance and

resilience. Scalability feature can also be considered as if workloads increase then

whole system can handle this workload in a much better way as compared to single

instance [45]. There are certain problems in achieving the above criteria and one

of them is cluster coordination. Cluster Coordination in ONOS can be achieved by

introducing distribution mechanism in different subsystems that generates events.

Events are generated in stores and are shared among all the nodes in the clusters

through distributed mechanism. These distributed mechanisms are built in various

services’ distributed store [44].

2.2.5 Floodlight

Floodlight is an enterprise class, Java based controller which is supported by a big

community of developers. It is designed to work with routers, switches, virtual

machines and access points that provisions openFlow standard.It is easy to setup

with very less dependencies and offers modules loading system so that it can be

extended and enhanced [46]. It supports virtual switches so it is easy to develop

and test modules many times in a virtual environment. It is modular, runs over

multiple platform and manages memory [47].

Architecture of floodlight is modular and has different modules like topology man-

agement, device/end-station management, path/route computation, infrastructure

for web access (management), counter store (OpenFlow counters), and a state

storage system, that are well stitched a by module-management system [48]. The

Literature Review 23

Floodlight OpenFlow controller can interoperate with any element agent that sup-

ports OpenFlow, but Big Switch also provides an open source agent that has been

incorporated into commercial products [49].

2.2.6 RYU

Ryu is and open source controller written in Python, developed and supported

by NTT cloud data centers. It supports NETCONF and OF-config network man-

agement protocols, as well as OpenFlow [50]. User of platform can write code in

order to utilize the supporting infrastructure. This feature provide flexibility of

SDN solution. For scalability feature Ryu does not have any kind of clustering

ability inherently so external tools are required so that network state can be shared

and failover between cluster members can be allowed. Ryu has component based

architecture where existing components can be combined to form new application

or existing components can be modified and new can be implemented [51].It pro-

visions OenFlow protocol up to latest version and has an OpenFlow encoder and

decoder library. Like other SDN controllers, it can create and send OpenFlow mes-

sages, listen to asynchronous events and can parse and handler incoming packets

[50].

Table 2.1 compares the popular SDN controllers based on different parameters.

Table 2.1: Comparison of SDN Controllers

Controller

Attribute

ODL Flood-

Light

Ryu Beacon ONOS NOX

Year 2013 2013 2013 2010 2014 2009

GUI Web

Based

CLI

Web

Based

Java

CLI Web

Based

CLI

Web

Based

CLI

Web

Based

UI

Literature Review 24

Controller

Attribute

ODL Flood-

Light

Ryu Beacon ONOS NOX

Programm-

ing Lan-

guage

Java Java Python Java Java C++

Supported

Platform

Linux,

MacOS

Win-

dows

Linux,

MacOS

Windows

Linux Linux,

MacOS

Win-

dows

Linux,

MacOS

Win-

dows

Linux

Open Stack Y N Y N Y N

South-

bound APIs

OPen

Flow

1.0,1.3

Open

Flow

1.0-1.5

Open

Flow

1.0-1.5

Open

Flow

1.0

Open

Flow

1.0, 1.3

Open

Flow

1.0

North-

bound APIs

REST,

REST-

CONF

XMPP,

NET-

CONF

REST

Java

RPC

Quantu-

m

REST

Ad-hoc REST,

Neutron

Ad-hoc

Architectu-

re

Flat

Dis-

tributed

Centrali-

zed

Centrali-

zed

Centrali-

zed

Flat

Dis-

tributed

Centrali-

zed

Modularity High High Fair Fair High Low

Document-

ation

Good Good Medium Fair Good Limited

Literature Review 25

Controller

Attribute

ODL Flood-

Light

Ryu Beacon ONOS NOX

Community

Support

Linux

Founda-

tion

Big

Switch

Networks

NTT Stanford

Univer-

sity

Linux

Founda-

tion

Nicira

Net-

works

Licence EPL 1.0 Apache

2.0

Apache

2.0

GPL 2.0 Apache

2.0

GPL 3.0

Consistency Yes Yes Yes No Yes No

Multi-

threading

Yes Yes Yes Yes Yes Yes

(NOX-

MT)

2.3 Comparison and Conclusion

The main focus of this study is to identify the way for interconnecting the private

networks by implementing the application of NAT on SDN. Existing approaches

are based on the interconnecting networks by introducing some translating hard-

ware in the Software Defined Networking (SDN) environment which adds more

delay.

For reducing the delay the implementation is to be done on software level which

takes advantage of the underlying concept of Software Define networking.

Several issues are discussed in the existing studies related to the translating pro-

cess and interconnecting networks. Comparison of the techniques proposed in the

literature is enlisted in Table 2.2 where publication year, objective of the study,

limitations and strengths are mentioned.

Literature Review 26

Table 2.2: Literature Review

Ref. Pub.

Year

Objectives Strengths Weaknesses

[27] 2012 Decoupling

Architecture

from infras-

tructure

• Ease the adoption

of various new Internet

architectures

• No automation for

services offered by

middle box.

[25] 2013 Improve vari-

ous aspects of

network man-

agement

• Enable network op-

erators to implement

network policies in a

high-level language

• Limited number of

control domains for

implementing polices.

[9] 2014 Benefits of us-

ing SDN in

a multitude of

environments

• SDN can be used for

simplifying the man-

agement process of big

networks

• Routers maintain

registry for IP conver-

sion.

• Add delay

[11] 2016 Support end

to end con-

nectivity

between col-

laborating

partners

• Made communica-

tion possible using

SDN on network edge

• No mechanism for

dealing with overlap-

ping customer address

space.

[31] 2017 Use SDN to

interconnect

clouds

• Resource sharing

between clouds made

easy

• Workload at NAT

gateways caused delay

[30] 2017 Implement ef-

ficient routing

scheme for

Sd-WAN

• Learning the best

path for routing.

• Less used links are

pruned causing con-

gestion on commonly

used links.

Literature Review 27

Ref. Pub.

Year

Objectives Strengths Weaknesses

[28] 2018 Find suitable

protocol for

SDN

• OpenFlow protocol

setup communication

between controller and

forwarding plane of

network

• No rules defined for

converting IP.

[29] 2018 Provides low-

cost, secure,

access to com-

petitive com-

puting infras-

tructures

• Efficiently manage

the raw data streams

produced by large IoT

devices

• Difficult to establish

Peer-to-Peer session.

[2] 2019 Explore the

possibility of

applying new

techniques for

networking on

SD-WAN

• SD-WAN is a

promising architecture

of next generation

design of wide area

network.

• Cope with require-

ments of applications

• High load on servers

for NAT traversal

[32] 2019 Interconnect

datacen-

tres in SDN

environment

• Programmability

within router

• Successful transla-

tion of addresses.

• Resource sharing

• Limited to two data-

centres

• No process defined

for IP conversion

[12] 2019 Provide

agility and

cost reduction

to organiza-

tions.

• Significantly ease the

adoption of colocation

services.

• No process defined

for address transla-

tion.

Literature Review 28

Ref. Year Technique

used

Objective Weaknesses

[8] 2019 Interconnecting

organizations

in SDN en-

vironment

using NAPT

middleware

• Programmability

within router

• Successful transla-

tion of addresses.

• Resource sharing

• Additional physical

hardware.

• Yielded more delays

• Costly

Most of the proposed approaches are based on interconnecting organization us-

ing traditional technologies. Some approaches have used SDN for IP conversion

process but they have used NAT gateways for this purpose or have introduced

hardware for conversion process. In order to cope with current requirements of

services and applications, network needs to be dynamic and centrally manage-

able. Our work is different from current approaches in terms of interconnecting

organization/clouds by implementing the translating service at software level. For

example, Kim et al. [25] considered implementing polices in SDN for automating

the services but the mechanism for automating the services offered by middlebox

like Firewall and NAT. Raghavan et al. [27] proposed various aspects of network

management using SDN but not defined any policy for IP conversion process. The

approach considered limited number of control domains like time, network flow

and data usage for implementing policies. Jammal et al. [9] proposed using SDN

for multitude of environments and showed that SDN can simplify the management

process but here routers were used the maintain the NAT registry which hindered

the scalability feature of SDN. Approaches presented in [31] and [2] used SDN

for implementing various aspects but increased workload at NAT gateways. The

approaches proposed by [11] and [12] supported end to end connectivity using

SDN and provided agility and cost reduction to organizations aiming to leverage

colocation services respectively but not defined any mechanism for dealing with

overlapping customers’ space. Another approach proposed by Monir et al. [8]

added additional hardware of IP translation purpose and made resource sharing

Literature Review 29

successful but because of this extra hardware the transmission delay increased

making the situation even worse.

After critically analyzing the literature, we adopted an approach which considers

interconnecting hosts residing in private networks by making NAT program on

controller. The approach has used the concept of SDN where controller is consid-

ered as main entity. Choice of controller to be used depends on different param-

eters like architecture, modularity, programming language, developer community

support, documentation available and low learning curve. Controller should have

centralized architecture with good developer’s community support and documen-

tation. Keeping in view these parameters Floodlight Controller is considered a

good choice to be used in this approach because it supports centralized architec-

ture. Good documentation and developer’s community support is also available for

this controller which makes it easy to learn and integrate new feature in existing

one.

Chapter 3

Proposed Approach

This chapter contains detail about research methodology and implementation de-

tails.

3.1 Introduction

In the literature section, we have identified most commonly used technique for

interconnecting hosts between private networks. NAT is performed at NAT gate-

way or Wi-Fi access points adding workload on these gateways. As networking

paradigm is now moving to SDN still IP conversion is taking place at NAT gate-

ways or hardware points.

To overcome the gap in existing techniques, we have proposed a new technique

which takes advantage of the underlying concept of SDN and implements NAT

module at software level.

3.2 Proposed Architecture

Flow chart of our proposed approach is shown in Figure 3.1.

30

Proposed Methodology 31

Figure 3.1: Flowchart of Proposed Approach

3.2.1 Mininet

Our experiment started with Mininet. Mininet is one of the network emulation

tool which is used for creating networking scenarios. This may include controllers,

switches, virtual hosts and links. Linux network software is run on its hosts

Proposed Methodology 32

whereas OpenFlow protocol is supported by their switch which is important for

SDN. A complete experimental network scenario can be prototyped using Mininet

and can be used for testing debugging and any other research task [54]. Mininet

is used in this research for creating topology. Graphical user interface of Mininet

called as MiniEdit is used for creating graphical image of topology.

The topology created for experiment is presented in Figure 3.2.

Figure 3.2: Implemented Topology

In the above figure:

• Hosts are represented as h1 and h2

• Switches are s1,s2 and s3

• SDN controller is represented as c0 where NAT program is implemented

Python can also be used for creating custom network topologies that imitates real

world networks. The above network topology can also be created using Python

and instantiated using Mininet as given in Figure 3.3.

Proposed Methodology 33

Figure 3.3: Sample Code for Creating Simple Network Topology using Python

3.2.2 Pingall Command and ICMP Packets

At next Pingall command is sent for checking connectivity between hosts. It shows

0% packet drop if hosts are reachable to each other. Internet Control Message

Protocol (ICMP) is also used for generating error message if hosts are not reachable

to each other.

Fig 3.4 shows the pingall result when hosts are reachable to each other.

Figure 3.4: Pingall Result Showing Connectivity

Proposed Methodology 34

3.2.3 Flow Table Entries

After pingall, flow table entries are checked as the packet is received on switch.

If match is found with entry then packet will be forwarded to the destination

according to the rule installed. It shows that the rule for forwarding has already

been installed on the OpenFlow switch. When no match found, packet will be

forwarded to the controller where Controller instructs how to deal with the packet.

3.2.4 Controller

Floodlight controller is used for this work and to implement NAT program. It

is pre-declared in the script which is launched in separate CLI when this script

started running. As the packet is received on controller, it will take actions on

packet. New functionalities can be added with ease on top of controller and these

functionalities and rules can be installed on OpenFlow switches regarding such

functionalities [52]. Figure 3.5 presents the working of controller.

Figure 3.5: Working of Controller

Proposed Methodology 35

The controller has several modules with each module implementing a particular

network service. Every module is independent of other but depending on condi-

tion, can use internal API which is exposed by other module. AS an example,

a packet must be routed through NAT device so NAT module can use Layer3

Routing module [53] or for converging packet Multipath Routing will also be used

in conjugate with other modules . Developers are allowed to extend any existing

functionality at software level without disturbing the hardware which depicts the

advantage of using SDN.

3.2.5 NAT Module

The implemented NAT module has used Floodlight SDN controller’s core ser-

vices for dispatching actions and listening to subscribed events. Rules Regarding

NAT entry running on OPenFlow switches are installed using openFlow provide

of Controller. REST API and JAVA API is exposed by module to the controller

and implemented module also interacts with Layer3 routing module.

Fig 3.6 represents the architecture of NAT module and interaction with Controller

and its routing module.

Figure 3.6: Architecture of NAT Module

Proposed Methodology 36

The implemented NAT module has multiple components and it is compiled with

controller. REST API and JAVA API are exposed to controller.

One of the listener components is used to listen changes at OPenFlow switch and

other to listen messages that arrive at controller.

Dispatcher will build the OPenFlow messages queued on controller for sending to

particular OpenFlow switch.

NAT logic and table change NAT entries on arriving packets.

3.2.5.1 NAT Working

As controller will send packet to multiple applications, one such application is our

implemented NAT application.

For implementing NAT service in SDN controller, it is not required that the for-

warding devices modify the datagram and they must have NAT table. This task

is done by the controller which is the main entity in SDN.

Controller has a global view of the network and will maintain NAT service state

and new rules will be dispatched for OpenFlow switch and for every connection.

Steps performed for NAT are explained below.

Steps:

1. A rule about redirecting all ARP requests is installed in OpenFlow switches.

2. An ARP request is sent from private host asking for MAC address of default

gateway.

3. ARP request is redirected to controller from OpenFlow switch.

4. An ARP reply is generated from controller containing the Medium Access

Control (MAC) address of OpenFlow switch and is sent back to switch as

shown in Figure 3.7.

Proposed Methodology 37

Figure 3.7: ARP Request and Reply Sequence

5. As soon as private host receives the ARP reply, the data packet is sent to

MAC address which was received in ARP reply.

6. Packet is received on OpenFlow switch with no rule, so it is directed to

controller.

7. Packet is analyzed in controller and NAT module fills a NAT entry and

change the private IP and injects the packet on network. At the same time

a rule is installed on OF switch to directly translate the packets destined for

this destination and port through which this packet should be sent as shown

in Figure 3.8.

Figure 3.8: IP Conversion Through NAT Registry

Proposed Methodology 38

8. The controller also tells the receiving switch that a packet with these par-

ticular credentials is received on this particular port and where to forward

this packet.

9. Public host reply to the received packet.

10. As the reply data packet reaches the OpenFlow switch again, it is translated

back because of installed rule and sent to host. Wireshark and Iperf are used

for generating results and for confirming the conversion of IPs.

3.2.6 Link Convergence

Set of available and offered services differ from site to site. In case any particular

site goes down then automatic connectivity can be assured using the service called

as Multipath Routing. Another scenario is implemented for explaining this link

connectivity as shown in Figure 3.9.

Figure 3.9: Organizations Connection When Link is Up

The above figure shows the connection of h1 to h2 with the shortest path Data is

moving between h1 and h2 through path h1→ s1→ s2→ h2.

If this link goes down then service availability can be assured by calculating other

path. Different services are offered at different sites (different Co-lo points). This

service accessibility from different Co-Location points can be made available if link

goes down by converging the traffic as shown in Figure 3.10.

Proposed Methodology 39

Figure 3.10: Organizations Connection When Link is Down

In the above figure the dashed line (—–) shows that link is down and no traffic

can pass through this link. Controller will recalculate the path and install new

rules on OpenFlow switches and tell them that this path is no more available. The

whole traffic will be converged to the path h1→ s1→ s3→ s2→ h2.

Chapter 4

Results and Discussion

The main goal of this thesis is to present the application development on novel net-

working approach SDN for interconnecting organizations where they do not need

to have unique IPs. Implementation detail is provided in Proposed Approach and

Implementation chapter. This chapter contains details about testing environment,

results and evaluations. Functional testing is done for checking the correctness of

implemented network service and performance test is conducted for evaluating

results.

4.1 Test Environment

Four our experiments, we have used a base machine running on Ubuntu version

18.04 LTS with the hardware containing Intel Core i7 8550U CPU with a clock

speed of 2.00 Giga Hertz and RAM of 8 Gigabytes. The selected controller for this

thesis is Floodlight controller. It is a java based controller and module is imple-

mented and integrated with it using eclipse IDE. Apache ant is used for compiling

controller’s modules. Building and handling of big Java projects is done through

this command-line tool [55]. Implemented module is tested through topology.

Topology is emulated using Mininet and Floodlight controller is connected with

it. Mininet is a tool for emulating network scenarios.

40

Results and Discussion 41

4.1.1 Floodlight Compilation

Floodlight has several modules where each module performs specific task. Source

code contains almost 502,000 lines of codes with several external Java libraries.

The routing module is already developed by Floodlight community and this mod-

ule has been used in this thesis. The implemented module took 1-2 minutes for

compiling with Floodlight controller.

4.2 Network Emulation

In order to check the implemented module topology is created with two hosts and

three switches connected with controller. Mininet is used for creating network

because it supports OpenFlow switches and several topologies can be created and

initiated using python scripts.

4.2.1 Topologies

The topology for experimenting is presented in Figure 4.1.

Figure 4.1: Topology for Experiment

Results and Discussion 42

The configuration of the hosts for topology of Figure 4.1 is shown in Table 4.1.

Table 4.1: Configuration of Hosts for Simple Topology

Host IP Default
gateway

Network Connect-
ion

IP of h1
after con-
version

h1 192.168.1.101 192.168.1.1 192.168.1.0/24 h1—s1 11.0.0.2

h2 11.0.0.101 11.0.0.1 11.0.0.0/24 h2—s2 -

Table 4.2: Configuration of Switches for Simple Topology

Switch Datapath Id (dpid) Connection
s1 00:00:00:00:01:00 s1—h1

s1—s2

s2 00:00:00:00:01:01 s2—s1
s2—h2

Host h1 is configured with private network having IP in range of 192.168.1.0/24

whereas h2 is configured with public IP 11.0.0.0/24. In order to confirm the

connectivity between hosts Ping is performed between hosts which is shown in

Figure 4.2.

Figure 4.2: Hosts Pinging Each Other

By looking at the above figure it is confirmed that hosts are now connected and

can communicate and send data to each other. After making sure that hosts can

Results and Discussion 43

ping each other, the main task is to find whether packets are translated or not. It

is checked by using the Wireshark during Ping request.

Fig 4.3 represents the Wireshark results for simple topology.

Figure 4.3: Wireshark Capture of NAT Result in Simple Topology

Host h1 is configured with private network having IP 192.168.1.101and wants to

communicate with h2 which is residing out of this private network. As request is

received on the switch s1 it is redirected to controller which is the ARP request.

The controller replies to this ARP request and installs rules on OpenFlow switches

and changes IP. Now this private IP is converted to public IP 11.0.0.2 and can

communicate and access data.

The above figure confirms that implemented service is working fine in Floodlight

controller and packets are translated correctly and checksum status is also correct

which shows that data is reaching destination without corruption. Request always

goes to controller which is the ARP request and then controller installs rules for

further packets. Rules are installed on OpenFlow switches that tells them that

where to forward the upcoming (if their destination is same as of previous packets)

and there is no need to redirect packets to controller every time. Beside installation

rules are refreshed after 10s for finding that topology is still same or not. Figure 4.4

represents the ping reachability when rules are installed in the OpenFlow switches.

Results and Discussion 44

Figure 4.4: Ping Reachability Before and After Rules Installation

When ARP request is sent to controller, the controller takes decision about packet,

and tells switches where to forward packet. The above diagram show the ping

reachability when controller is installing rules in switches. During rules installation

for first time, host are not reachable to each other that is why Ping results fail.

Fig 4.5 presents the Wireshark result for ARP.

Figure 4.5: Wireshark Results for ARP

The above figure shows that ARP request is sent from host to the default gateway

so that it can be redirected to controller. As h1 is not connected to h2 at this

time ping result is also as shown in figure 4.4. But as rules are installed then host

can ping each other. Figure 4.6 present the graphical representation of RTT of 50

PING request further explaining the connectivity between hosts.

Results and Discussion 45

Figure 4.6: RTT by PING Sequence Number On Simple Topology

RTT is taken for 50 Ping request. At some points in the above graph, RTT is

exceptionally very high. This is due to the installation of the OpenFlow rules in

OpenFlow switches. When Ping is started then rules are installed in the OpenFlow

switches which increases the round trip time. After the installation of rules, RTT

is seen too be at low value. OpenFlow rules are refreshed periodically by controller

due to which value of RTT is high. Figure 4.7 presents the graphical representation

of RTT results for link up and down (Topology presented in Figures 3.9 and 3.10

in chapter 3).

Figure 4.7: RTT by PING Sequence When Link is Up and Down

The value of RTT is high when rules are refreshed. As the link is up RTT’s value is

not increasing but as the link goes down the value of RTT becomes exceptionally

high. This is because of the fact that controller is recomposing new topology to

converge the traffic to some other path. It takes almost 10-15ms to converge the

Results and Discussion 46

traffic to new path in order to assure service availability. For evaluation purpose

we have further tested our implemented topology for parameters like Bandwidth

vs Jitter and Bandwidth vs Out of Order Packet % and then Time Interval vs

Jitter and Time Interval vs Out of Order Packet %. Firstly, we have kept the

time Interval constant i.e. 10s and changed the data transfer rate from 5 Mbps

to 40Mbps and calculated Jitter and Out of Order Packet %. The results are

presented in the Table 4.3.

Table 4.3: UDP Value for Jitter and Out of Order Packet % (10s Time Inter-
val)

Bandwidth
(Mbps)

Jitter
(ms)

Out of Order
Packets
%

5 0.031 0.2359

10 0.027 0.2796

20 0.032 0.1711

30 0.06 0.2218

40 0.035 0.1583

5 0.031 0.2359

Figure 4.8 and 4.9 shows the graphical representation of results.

Figure 4.8: Bandwidth/Jitter

Results and Discussion 47

Figure 4.9: Bandwidth/Out of Order Packet %

The next result is taken by keeping the Bandwidth constant i.e. 20Mbps and

varying the time Interval. The results are presented in Table 4.4.

Table 4.4: UDP Value for Jitter and Out of Order Packet % (20Mbps)

Time Interval
(sec)

Jitter
(ms)

Out of Order
Packets
%

10 0.003 0.21

20 0.001 0.052

30 0.006 0.012

40 0.041 0.081

50 0.001 0.077

60 0.007 0.038

Figure 4.10 and 4.11 represents graphical representation of Time Interval/ Jitter

and Out of Order Packet %.

Results and Discussion 48

Figure 4.10: Time Interval/Jitter

Figure 4.11: Time Interval/Out of Order Packet %

4.3 Comparison

We have compared our approach and results with dataset of existing approach

proposed by Monir et al. [8]. They did the translation by introducing hardware

and we implemented the same translation process on software level. Table 4.5 rep-

resents the comparison of results of our proposed approach and previous approach

[8].

Results and Discussion 49

Table 4.5: Comparison of Results (w.r.t Bandwidth)

Previous Approach Proposed Approach

Bandwidth
(Mbps)

Jitter
(ms)

Out of
Order
Packets
%

Bandwidth
(Mbps)

Jitter
(ms)

Out of Or-
der Pack-
ets %

5 0.1126 0.4001 5 0.031 0.2359
10 0.1502 1.0620 10 0.027 0.2796
20 0.1703 0.9701 20 0.032 0.1711
30 0.0612 1.8401 30 0.06 0.2218
40 0.3596 0.6228 40 0.035 0.1583

We can clearly see from the Table 4.5 that the jitter and out of order packet %

encountered through our proposed approach is quite less than that of previous

approach. As the implementation is at software level so packet doesn’t have to

wait on any extra hardware for processing. The graph in Figure 4.12 and Figure

4.13 represents in a better way.

Figure 4.12: Comparison of Previous and Proposed Approach (Band-
width/Jitter)

From graph represented in Figure 4.12, we can see that maximum jitter through

our approach is approx. 0.06 ms which is less than the least jitter encountered

through previous approach. Figure 4.13 shows the graphical representation of

comparison for Bandwidth/ Out of Order Packet%.

Results and Discussion 50

Figure 4.13: Comparison of Previous and Proposed Approach (Band-
width/Out of Order Packet %)

It is clear from the Figure that Packet Out of Order% has decreased with our

approach. The highest value here is 0.23% at 10 Mbps transfer rate while with

previous approach it is 1.14% for the same Bandwidth.

Table 4.6 presents the comparison of difference for jitter and Out of Order Packet

% for variable values of Time interval.

Table 4.6: Comparison of Results (w.r.t Time Interval)

Previous Approach Proposed Approach

Time
Inter-
val
(s)

Jitter
(ms)

Out of
Order
Packets%

Time
Inter-
val
(s)

Jitter
(ms)

Out of Or-
der Pack-
ets%

10 0.024 0.39 10 0.003 0.21
20 0.032 0.49 20 0.001 0.052
30 0.038 0.3 30 0.006 0.012
40 0.075 0.17 40 0.041 0.081
50 0.029 0.22 50 0.001 0.077

From the table we can see that performance difference is also depicted here. The

graphs represent the difference in a better way.

Results and Discussion 51

Figure 4.14: Comparison of Previous and Proposed Approach (Time Inter-
val/Jitter)

From the Figure 4.14, we can see that the maximum value of jitter through per-

vious approach is 0.075ms for 40Mbps but through our approach it is fairly low.

Next Figure shows the graphical representation of Out of Order Packet

Figure 4.15: Comparison of Previous and Proposed Approach (Time Inter-
val/Out of Order Packet %)

From the graph we can clearly see that the peak value for achieved through our

approach is 0.21% but still it is much less than the previous approach.

Results and Discussion 52

Following are the answers of research questions mentioned in Chapter 1 which we

have identified after conducting literature review and experiments.

RQ1: How organizations can be interconnected using their private IPs

and without collision due to same addresses?

Organizations can connect using their private IPs if they agree on placing a registry

on their routers which is not a feasible and scalable solution. Besides if any

external hardware is used for IP translation purpose then processing on hardware

cause workload and adds delay. Our solution is based on taking advantage of the

underlying concept of Software Define Networking. NAT application is developed

on SDN controller which aims to help enterprises by automating the connectivity

with co-location points as per their needs. Rules are installed by controller on the

OpenFlow switches and consumer can get resources from any provider. Consumer

initiates request using private IP and the controller changes IP of requested packet

and inject it on network. This way no two IPs remain same because all the

OpenFlow switches work under controller and redirect their request to controller.

RQ2: Which SDN controller can perform best when interconnecting

organizations? What could be parameters for comparing and selecting

controller?

Different open source SDN controllers are available with different specifications.

In depth study of different controllers is conducted with formulation of parameters

for comparison. As controller controls whole network and keeps a central view of

network so central architecture is required. Beside this the ease of implementing

any new service according to the need and demand of new applications, low learn-

ing curve with a lot of developer’s community support and documentation are the

specifications of parameters for selecting controller. Based on these requirements

Floodlight SDN controller is selected for this thesis.

RQ3: How service availability and disaster management can be assured

in case of particular service provider goes down?

Set of available and offered services (from Colo-providers) differ from site to site.

In case any particular site goes down then how those services can be accessed

Results and Discussion 53

and continuity of business (COB) can be assured. One way could be to get two

connections one primary and other COB by paying double. If primary goes down

then COB connection can be accessed as backup. Other way could be to automate

the process of accessing same service by using intelligent system which connects

to backup automatically when primary goes down. Our approach focuses on the

second way for accessing service. If service provider goes down or have performance

issue, then proposed solution dynamically connects the consumer to the service

provide and hence assues service availability.

Chapter 5

Conclusion and Future work

The main goal of this thesis is to make interconnection process of organization easy

and feasible especially when organizations are trying to migrate their businesses

over cloud. In particular we have focused on interconnecting private organiza-

tions where they may communicate with each other using the novel paradigm of

networking called as SDN. The growth of internet has increased tremendously in

recent years. Networking requirements have changed with the emergence of new

type of services and applications like social media, big data, cloud and mobile

computing and internet of things. Changing such a sizeable network according to

new requirements and assigning unique IPs to all devices is not easy. Software

defined technologies are considered to be a valid solution for solving the difficul-

ties in current network. After critically analyzing the literature, we have observed

that traditional networking use NAT gateways for IP conversion. Even in SDN

environment, IP conversion process is taking place at NAT gateways.

We argue that using NAT gateways or any extra hardware for IP conversion in

SDN is not a feasible solution because it adds delay while processing the packet,

degrading the performance of SDN. Another disadvantage of placing any hardware

for IP conversion is that it adds extra cost and is not scalable.

Our proposed solution is based on implementing NAT service on SDN controller.

By using the important feature of SDN that is about implementing services at

54

Conclusion and Future Work 55

software level, we can ease the process of IP conversion. Floodlight controller is

used for implementing NAT service because it has centralized architecture with

modular approach. Well documentation, developer’s community support and low

learning curve makes it suitable for implementing new service. Results have shown

that by implementing NAT program on controller, less delay and out of order

percentage has received.

Overall findings of our study are : implementation of NAT service on controller so

changes can be made at software level without disturbing hardware, link conver-

gence using multipath routing due to which services can be accessed from alter-

native paths if one link goes down and overall less delay and out of order packet

%.

5.1 Future Work

Currently controller is doing routing and convergence based on reachability. If

failure happens then it goes to other switch and ensures reachability. In future

we will try to enhance the controller’s capability to not only deal with link failure

metric but also with other metrics like performance metric, business metric, delay

and cost offered for same services available at different Co-Location points. The

controller should be smart enough to connect to other point offering minimum

price level for same service. More controllers can also be added in future for

achieving quality of service.

In current scenario convergence of traffic as link goes down is happening after 10-15

sec. In future we will try to implement some other protocol for quicker detection

of link down and helps in converging traffic quickly.

Not all the switches working in organizations are OpenFlow switches or OpenFlow

compliant. We aim to extend our work and find a path where the solution can

work with their existing switch product. Algorithm can be designed to expand

Conclusion and Future Work 56

the capabilities to work with the switches which may or may not be OpenFlow

complaint.

Bibliography

[1] O. Michel and E. Keller, “Sdn in wide-area networks: A survey,” in 2017

Fourth International Conference on Software Defined Systems (SDS). IEEE,

2017, pp. 37–42.

[2] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide area

network (sd-wan): Architecture, advances and opportunities,” in 2019 28th

International Conference on Computer Communication and Networks (IC-

CCN). IEEE, 2019, pp. 1–9.

[3] H.-C. Wang, C. Chen, and S.-H. Lu, “An sdn-based nat traversal mechanism

for end-to-end iot networking,” in 2019 20th Asia-Pacific Network Operations

and Management Symposium (APNOMS). IEEE, 2019, pp. 1–4.

[4] L. L. Zulu, K. A. Ogudo, and P. O. Umenne, “Emulating software defined

network using mininet and opendaylight controller hosted on amazon web

services cloud platform to demonstrate a realistic programmable network,”

in 2018 International Conference on Intelligent and Innovative Computing

Applications (ICONIC). IEEE, 2018, pp. 1–7.

[5] G. Kim, J. Kim, and S. Lee, “An sdn based fully distributed nat traver-

sal scheme for iot global connectivity,” in 2015 International Conference on

Information and Communication Technology Convergence (ICTC). IEEE,

2015, pp. 807–809.

[6] J. W. J. L. C. M. Peng Wu, Yong Cui, “Transition from ipv4 to ipv6: A state-

of-the-art survey,” IEEE Communications Surveys and Tutorials, vol. 15,

no. 3, pp. 1407–1424, 2012.

57

Bibliography 58

[7] C. Trois, M. D. Del Fabro, L. C. de Bona, and M. Martinello, “A survey on

sdn programming languages: Toward a taxonomy,” IEEE Communications

Surveys & Tutorials, vol. 18, no. 4, pp. 2687–2712, 2016.

[8] M. F. Monir, R. Uddin, and D. Pan, “Behavior of napt middleware in an sdn

environment,” in 2019 4th International Conference on Electrical Information

and Communication Technology (EICT). IEEE, 2019, pp. 1–5.

[9] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined

networking: State of the art and research challenges,” Computer Networks,

vol. 72, pp. 74–98, 2014.

[10] Y. Sinha, K. Haribabu et al., “A survey: Hybrid sdn,” Journal of Network

and Computer Applications, vol. 100, pp. 35–55, 2017.

[11] R. di Lallo, G. Lospoto, M. Rimondini, and G. Di Battista, “Supporting end-

to-end connectivity in federated networks using sdn,” in NOMS 2016-2016

IEEE/IFIP Network Operations and Management Symposium. IEEE, 2016,

pp. 759–762.

[12] M. Bano, U. A. Qureshi, R. N. B. Rais, M. Tufail, and A. Qayyum, “Mir-

acle: An agile colocation platform for enabling xaas cloud architecture,” in

2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGRID). IEEE, 2019, pp. 604–610.

[13] P. Srisuresh, B. Ford, and D. Kegel, “State of peer-to-peer (p2p)

communication across network address translators (nats),” Internet

Engineering Task Force, Request For Comments, 2008, accessed: Aug.

04,2020. [Online]. Available: https://www.hjp.at/doc/rfc/rfc5128.html

[14] Definition - what does control plane mean? Accessed: Aug. 03, 2020. [Online].

Available: https://www.techopedia.com/definition/32317/control-plane

[15] Control and data planes. Accessed: Aug. 03, 2020. [Online]. Available:

https://networkdirection.net/articles/network-theory/controlanddataplane/

https://www.hjp.at/doc/rfc/rfc5128.html
https://www.techopedia.com/definition/32317/control-plane
https://networkdirection.net/articles/network-theory/controlanddataplane/

Bibliography 59

[16] E. Conrad, S. Misenar, and J. Feldman, “Chapter 4 - domain

4: Communication and network security,” in Eleventh Hour CISSP R©

(Third Edition), third edition ed., E. Conrad, S. Misenar, and

J. Feldman, Eds. Syngress, 2017, pp. 95 – 116. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/B9780128112489000048

[17] Sdn controller (software-defined networking controller). Accessed: Aug.

03, 2020. [Online]. Available: https://searchnetworking.techtarget.

com/definition/SDN-controller-software-defined-networking-controller#:

∼:text=An%20SDN%20controller%20is%20an,switches%20where%20to%

20send%20packets.

[18] What is openflow? definition and how it relates to sdn. Accessed: Aug.

03, 2020. [Online]. Available: https://www.sdxcentral.com/networking/sdn/

definitions/what-is-openflow/

[19] Ccna 7.7.c: Northbound and southbound apis. Accessed:

Aug. 03, 2020. [Online]. Available: https://www.econfigs.com/

ccna-7-7-c-northbound-and-southbound-apis/

[20] Restful api (rest api). Accessed: Aug. 03, 2020. [Online]. Available:

https://searchapparchitecture.techtarget.com/definition/RESTful-API

[21] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and

R. Wattenhofer, “Achieving high utilization with software-driven wan,” in

Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, 2013,

pp. 15–26.

[22] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and

openflow: From concept to implementation,” IEEE Communications Surveys

& Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.

[23] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-defined networking: A comprehensive survey,” Pro-

ceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

http://www.sciencedirect.com/science/article/pii/B9780128112489000048
https://searchnetworking.techtarget.com/definition/SDN-controller-software-defined-networking-controller#:~:text=An%20SDN%20controller%20is%20an,switches%20where%20to%20send%20packets.
https://searchnetworking.techtarget.com/definition/SDN-controller-software-defined-networking-controller#:~:text=An%20SDN%20controller%20is%20an,switches%20where%20to%20send%20packets.
https://searchnetworking.techtarget.com/definition/SDN-controller-software-defined-networking-controller#:~:text=An%20SDN%20controller%20is%20an,switches%20where%20to%20send%20packets.
https://searchnetworking.techtarget.com/definition/SDN-controller-software-defined-networking-controller#:~:text=An%20SDN%20controller%20is%20an,switches%20where%20to%20send%20packets.
https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/
https://www.econfigs.com/ccna-7-7-c-northbound-and-southbound-apis/
https://www.econfigs.com/ccna-7-7-c-northbound-and-southbound-apis/
https://searchapparchitecture.techtarget.com/definition/RESTful-API

Bibliography 60

[24] What is an sdn controller? definition. Accessed: Aug. 03, 2020. [On-

line]. Available: https://www.sdxcentral.com/networking/sdn/definitions/

what-is-sdn-controller/

[25] H. Kim and N. Feamster, “Improving network management with software

defined networking,” IEEE Communications Magazine, vol. 51, no. 2, pp.

114–119, 2013.

[26] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,

“A survey of software-defined networking: Past, present, and future of pro-

grammable networks,” IEEE Communications surveys & tutorials, vol. 16,

no. 3, pp. 1617–1634, 2014.

[27] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and

S. Shenker, “Software-defined internet architecture: decoupling architecture

from infrastructure,” in Proceedings of the 11th ACM Workshop on Hot Top-

ics in Networks, 2012, pp. 43–48.

[28] R. Sahba, “A brief study of software defined networking for cloud computing,”

in 2018 World Automation Congress (WAC). IEEE, 2018, pp. 1–5.

[29] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A software defined fog node

based distributed blockchain cloud architecture for iot,” Ieee Access, vol. 6,

pp. 115–124, 2017.

[30] M. Manel, Y. Habib et al., “An efficient mpls-based source routing scheme

in software-defined wide area networks (sd-wan),” in 2017 IEEE/ACS 14th

International Conference on Computer Systems and Applications (AICCSA).

IEEE, 2017, pp. 1205–1211.

[31] P. L. Gallegos-Segovia, J. F. Bravo-Torres, P. E. Vintimilla-Tapia, J. O.

Ordonez-Ordonez, R. E. Mora-Huiracocha, and V. M. Larios-Rosillo, “Eval-

uation of an sdn-wan controller applied to services hosted in the cloud,” in

2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). IEEE,

2017, pp. 1–6.

https://www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-controller/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-controller/

Bibliography 61

[32] R. E. Mora-Huiracocha, P. L. Gallegos-Segovia, P. E. Vintimilla-Tapia, J. F.

Bravo-Torres, E. J. Cedillo-Elias, and V. M. Larios-Rosillo, “Implementation

of a sd-wan for the interconnection of two software defined data centers,”

in 2019 IEEE Colombian Conference on Communications and Computing

(COLCOM). IEEE, 2019, pp. 1–6.

[33] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed

software defined wan,” ACM SIGCOMM Computer Communication Review,

vol. 43, no. 4, pp. 3–14, 2013.

[34] Odl: Platform overview. Accessed: Aug. 03, 2020. [Online]. Available:

https://www.opendaylight.org/what-we-do/odl-platform-overview

[35] S. Badotra and J. Singh, “Open daylight as a controller for software defined

networking.” International Journal of Advanced Research in Computer Sci-

ence, vol. 8, no. 5, 2017.

[36] M. Bjorklund et al., “Yang-a data modeling language for the network

configuration protocol (netconf),” 2010, accessed: Aug. 03, 2020. [Online].

Available: https://www.hjp.at/doc/rfc/rfc6020.html

[37] D. Erickson, “The beacon openflow controller,” in Proceedings of the second

ACM SIGCOMM workshop on Hot topics in software defined networking,

2013, pp. 13–18.

[38] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,

“On controller performance in software-defined networks,” in 2nd {USENIX}

Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise

Networks and Services (Hot-ICE 12), 2012.

[39] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “Nox: towards an operating system for networks,” ACM SIG-

COMM Computer Communication Review, vol. 38, no. 3, pp. 105–110, 2008.

https://www.opendaylight.org/what-we-do/odl-platform-overview
https://www.hjp.at/doc/rfc/rfc6020.html

Bibliography 62

[40] M. Paliwal, D. Shrimankar, and O. Tembhurne, “Controllers in sdn: A review

report,” IEEE Access, vol. 6, pp. 36 256–36 270, 2018.

[41] D. Erickson, “Home-beacon-confluence 2013,” accessed: Aug. 01, 2020.

[Online]. Available: https://openflow.stanford.edu/display/Beacon/Home.

html

[42] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Ad-

vanced study of sdn/openflow controllers,” in Proceedings of the 9th central

& eastern european software engineering conference in russia, 2013, pp. 1–6.

[43] A. Giorgetti, A. Sgambelluri, R. Casellas, R. Morro, A. Campanella, and

P. Castoldi, “Control of open and disaggregated transport networks using

the open network operating system (onos),” IEEE/OSA Journal of Optical

Communications and Networking, vol. 12, no. 2, pp. A171–A181, 2019.

[44] A. Giorgetti, R. Casellas, R. Morro, A. Campanella, and P. Castoldi, “Onos-

controlled disaggregated optical networks,” in 2019 Optical Fiber Communi-

cations Conference and Exhibition (OFC). IEEE, 2019, pp. 1–3.

[45] Onos: Distributed operation. Accessed: Aug. 03, 2020. [Online]. Available:

https://wiki.onosproject.org/display/ONOS/Distributed+Operation

[46] Floodlight controller. Accessed: Aug. 03, 2020. [Online].

Available: https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/

overview?homepageId=1343545

[47] L. V. Morales, A. F. Murillo, and S. J. Rueda, “Extending the floodlight con-

troller,” in 2015 IEEE 14th International Symposium on Network Computing

and Applications. IEEE, 2015, pp. 126–133.

[48] Sdn series part five: Floodlight, an openflow controller. Ac-

cessed: Aug. 03, 2020. [Online]. Available: https://thenewstack.io/

sdn-series-part-v-floodlight/

[49] Floodlight architecture. Accessed: Aug. 03, 2020. [Online]. Available:

https://thenewstack.io/sdn-series-part-v-floodlight/

https://openflow.stanford.edu/display/Beacon/Home.html
https://openflow.stanford.edu/display/Beacon/Home.html
https://wiki.onosproject.org/display/ONOS/Distributed+Operation
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview?homepageId=1343545
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview?homepageId=1343545
https://thenewstack.io/sdn-series-part-v-floodlight/
https://thenewstack.io/sdn-series-part-v-floodlight/
https://thenewstack.io/sdn-series-part-v-floodlight/

Bibliography 63

[50] S. Asadollahi, B. Goswami, and M. Sameer, “Ryu controller’s scalability ex-

periment on software defined networks,” in 2018 IEEE International Confer-

ence on Current Trends in Advanced Computing (ICCTAC). IEEE, 2018,

pp. 1–5.

[51] Comparison of software defined networking (sdn) controllers. part 5:

Ryu. Accessed: Aug. 03, 2020. [Online]. Available: https://aptira.com/

comparison-of-software-defined-networking-sdn-controllers-part-5-ryu/

[52] How to write a module. Accessed: Aug. 03, 2020. [Online].

Available: https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/

pages/1343513/How+to+Write+a+Module

[53] B. G. Saleh Asadollahi, “Experimenting with scalability of floodlight con-

troller in software defined networks,” in 2017 International Conference on

Electrical, Electronics, Communication, Computer, and Optimization Tech-

niques (ICEECCOT). IEEE, 2017.

[54] Mininet overview. Accessed: Aug. 04, 2020. [Online]. Available: http:

//mininet.org/overview/

[55] Apache ant. Accessed: Aug. 05, 2020. [Online]. Available: https:

//ant.apache.org/

[56] C.-C. Tseng, C.-L. Lin, L.-H. Yen, J.-Y. Liu, and C.-Y. Ho, “Can: A context-

aware nat traversal scheme,” Journal of network and computer applications,

vol. 36, no. 4, pp. 1164–1173, 2013.

[57] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue, vol. 11,

no. 12, pp. 20–40, 2013.

https://aptira.com/comparison-of-software-defined-networking-sdn-controllers-part-5-ryu/
https://aptira.com/comparison-of-software-defined-networking-sdn-controllers-part-5-ryu/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343513/How+to+Write+a+Module
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343513/How+to+Write+a+Module
http://mininet.org/overview/
http://mininet.org/overview/
https://ant.apache.org/
https://ant.apache.org/

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Traditional NAT Traversal Schemes
	1.2 SDN based NAT Traversal Scheme
	1.3 Terminologies about SDN
	1.3.1 Control Plane
	1.3.2 Data Plane
	1.3.3 Controller
	1.3.4 OpenFlow
	1.3.5 Southbound Interface
	1.3.6 Northbound Interface
	1.3.7 RESTful API

	1.4 Problem Statement
	1.5 Research Questions
	1.6 Research Methodology
	1.7 Research Contribution
	1.8 Thesis Structure

	2 Literature Review
	2.1 SDN and Applications Development on SDN
	2.2 SDN Controllers
	2.2.1 OpenDaylight
	2.2.2 NOX
	2.2.3 Beacon
	2.2.4 ONOS
	2.2.5 Floodlight
	2.2.6 RYU

	2.3 Comparison and Conclusion

	3 Proposed Approach
	3.1 Introduction
	3.2 Proposed Architecture
	3.2.1 Mininet
	3.2.2 Pingall Command and ICMP Packets
	3.2.3 Flow Table Entries
	3.2.4 Controller
	3.2.5 NAT Module
	3.2.5.1 NAT Working

	3.2.6 Link Convergence

	4 Results and Discussion
	4.1 Test Environment
	4.1.1 Floodlight Compilation

	4.2 Network Emulation
	4.2.1 Topologies

	4.3 Comparison

	5 Conclusion and Future work
	5.1 Future Work

	Bibliography

